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SPACE WEATHER EFFECTS
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Legend: X = Major Effect E,e = Europa
X = Observable Effect P,p = Pluto

S,s = Solar Probe

(Note: Assessment very dependent on spacecraft design)

Some Examples of Space Weather Effects on JPL Spacecraft Ops
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Oct 23: Genesis at L1 entered safe mode. Normal operations resumed on
Nov. 3

Oct 24: Midori-2 Polar satellite failed (Spacecraft Charging...)
Stardust comet mission went into safe mode; recovered.

Oct 28: ACE lost plasma observations.
Mars Odyssey entered Safe mode

Oct 29: During download Mars Odyssey had a memory error
MARIE instrument powered off (has NOT recovered)

Oct 30: Both MER entered “Sun Idle” mode due to excessive star tracker
events

Two UV experiments on GALEX had excess charge so high
voltages turned off.

Nov. 6 Mars Odyssey spacecraft commanded out of Safe mode;
operations nominal.
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Auroral Effects on JPL Ops,

Oct. 24, 2003
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Lessons Learned: Geophysical
Indices Critical to Rapid
Anomaly Resolution for JPL
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Space Weather Effects on
Galileo Ops--Radiation
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Lessons Learned: Forecasting

can affect operations—Galileo
ops modified to take account

of radiation belt effects
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CHARGED PARTICLE INTERACTIONS DISCHARGES IN DIELECTRICS
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Space Weather Products
used by JPL Ops for Anomaly
Mitigation and Resolution
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S T Used by JPL
® Terrestrial ® Planetary
® GOES Products e Trapped Radiation Models
e Kp/Ap, AE, Dst (JPL)

e Scintillation Indices

® Atmospheric Models
(Atomic Oxygen, Drag)

® Auroral Fluxes
o AE8/AP8, CRRES Models

Magnetospheres
Jovian Radio Brightness
Atmospheric Models

lonospheric/Plasmaspheric
Models (JPL)

® Solar Auroral Models (JPL)

Soho (ESA), etc.) "
M PL p
¢ SPE Models (JPL) etegis UEL)
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DESCRIPTION:

21 June GSFC Space Weather Lab sent out predictions of a CME passing near
Vesta on the Sun/Earth/Vesta vector on or about 27 June.

Sunday, 27 June (08:32 UT), Dawn suffered an anomaly prior to its arrival at
Vesta.

When communications with Dawn were established during a planned DSN
contact early on June 28, spacecraft was found to be in safe comm mode.

The spacecraft had autonomously terminated thrusting with the ion propulsion
system (IPS) approximately 21 hours earlier.

Onboard fault protection detected that thrusting had been terminated, and
configured the spacecraft into safe comm mode.

The spacecraft was stable and healthy, with the HGA pointed at Earth and an
operating telecomm system.

Only identified anomaly was low pressure in IPS main and cathode Xe supply
plena.
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i Dawn Gamma Ray and Neutron Detector
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The Dawn GRaND Instrument’s background correlates with SPEs and
CME high energy particles. It did not see anything so apparently the
observation that the CME arrived at the same time as the safing event
anomaly was only “a very interesting coincidence....”.
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Detector Array

Example: Here GRaND shows gradually
~increasing energetic particle activity beginning 5-
e Aug in association with a CME. Such an
increase was not seen on 27 June.
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Observed anomalies were fully explained by loss of power to the
DCIU1/XVD circuits; No other likely (i.e., single-fault) cause was
identified

Cause was narrowed to a fault in the Over Voltage Protection circuit

Swapped to DCIU2 and resumed thrusting

GSFC space weather warnings allowed prediction/recognition of
potential space weather anomalies at Dawn

GSFC SWL prompt response helped eliminate a potential “cause”
and permitted narrowing the anomaly resolution study.
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JPL doesn’t launch if the weather’s bad...but why have
Launch Commit criteria for space weather?

®Critical operations in the first few hours following launch make a
spacecraft particularly vulnerable to radiation-induced Single Event
Upsets (SEUS) in the spacecraft memory.

®Corrupted memory can delay time-critical operation, such as solar
array deployment

® Spacecraft fault protection is typically not at full functionality until the
spacecraft is in nominal operating mode.
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Suggested Improvements in
Anomaly Mitigation
Procedures for JPL Missions



National Aeronautics and Space
Administration

Jet Propulsion Laboratory J P L N d
California Institute of Technology e e S

PLASMAS AND SPACECRAFT CHARGING

¢ FOR SPACECRAFT SURFACE CHARGING, NEED TO MONITOR AND PREDICT
THE TIME-VARYING PLASMA ENVIRONMENTS (REAL TIME FORECAST)

PLASMAS/RADIATION BELTS:

® NEED BETTER RADIATION BELT MODELS (BOTH AT EARTH AND THE OUTER
PLANETS) FOR MISSION DESIGN (CLIMATOLOGY) AND SHORT TERM “STORM”
PREDICTIONS (FORECAST)—CURRENTLY BEGINNING EVALUATION OF
AE9/AP9 FOR JPL MISSIONS

¢ NEED TO INCORPORATE RADIATION FORECASTS INTO JPL MISSION LAUNCH
CRITERIA

INTERACTION MODELING:

* MANY SPACE WEATHER MODELS NOW EXIST BUT NEED TO BE INTEGRATED
TO FORECAST SYNERGISTIC EFFECTS ON SPACE OPS LIKE THE
EVIRONMENTAL WORKBENCH PROGRAM (CLIMATOLOGY AND REAL TIME
FORECAST)
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Summary
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* WHY DO WE CARE?

e SPACE WEATHER EFFECTS HAVE HAD SERIOUS IMPACTS ON JPL MISSION
OPS AND ARE POTENTIALLY EXPENSIVE PROBLEMS

¢ THERE ARE STILL MANY UNKNOWN EFFECTS OF SPACE WEATHER ON
SPACE OPS

®* PROPER DESIGN AND FORE-KNOWLEDGE (CLIMATOLOGY AND REAL TIME
FORECAST) CAN LIMIT IMPACT OF SPACE WEATHER ON OPS

¢ WHAT CAN WE DO?

e DESIGN: EVALUATE THE MISSION AND OPS PLANS USING AN INTEGRATED
APPROACH THAT INCLUDES THE SPACE WEATHER EFFECTS

® BUILD: REQUIRE ADEQUATE TESTING (RECOMMEND ENGINEERING TEST
MODEL!) IN THE RELEVANT SPACE WEATHER CONDITIONS UNDER
REALISTIC OPS

® |LAUNCH: DEFINE SPACE WEATHER LAUNCH CONDITIONS FOR JPL MISSIONS

® FLIGHT. DURING FLIGHT, EVALUATE EFFECTIVENESS OF FORECASTS AND
MITIGATION METHODOLOGIES ON OPS

OST FLIGHT: USE OPS EXPERIENCE TO UPDATE MODELS AND DES
S _ | )
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